

D O C U M E N T

document title/ titre du document

INGLE VENT PSETS
IMULATION OOL
UNCTIONAL ESCRIPTION

prepared by/préparé par Daniel González Gutiérrez

reference/réference TEC-EDM/DGG-SST2
issue/édition 1
revision/révision 2
date of issue/date d’édition 26/07/04
status/état Draft
Document type/type de document Functional Description
Distribution/distribution

a

SST- Functional Description.doc

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM/DGG-SST2
page ii of iv

s

A P P R O V A L

Title
titre

 issue
issue

1 revision
revision

2

author
auteur

 date
date

26/07/04

approved by
approuvé by

 date
date

C H A N G E L O G

reason for change /raison du changement issue/issue revision/revision date/date

This file is based on the former User manual of
revision 1.1 renamed to Functional Description.
Changes from 1.1 to 1.2 are added here and a new
User manual is issued.

1 2 26/07/04

C H A N G E R E C O R D

Issue: 1 Revision: 2

reason for change/raison du changement page(s)/page(s) paragraph(s)/paragraph(s)

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM/DGG-SST2
page iii of iv

s

T A B L E O F C O N T E N T S

1 SCOPE 1

2 TERMS AND ACRONYMS...1

3 APPLICABLE DOCUMENTS...1

4 INTRODUCTION ..1

5 FUNCTIONAL OVERVIEW ..1
5.1 Running steps ...2
5.2 Internal Structure..3

5.2.1 Interdependency table ..3
5.2.2 Block diagram ..4

5.3 SST scripts description...5
5.3.1 SST_gui.tcl...5

5.3.1.1 ‘Actions’ menu button ...5
5.3.1.1.1 Gather design information ...6
5.3.1.1.2 Generate upsets ..6
5.3.1.1.3 Run a simulation introducing the upsets ..7

5.3.1.2 ‘Configuration’ menu button ...7
5.3.1.3 ‘Help’ menu button ..7

5.3.2 SST_startup.tcl ...7
5.3.3 SST_list_instances.pl ...8

5.3.3.1 all_instances.dat format ...9
5.3.4 SST_wires_parser.pl ..9

5.3.4.1 Wire files format ..10
5.3.5 SST_upset_generator.pl ...10

5.3.5.1 Options and switches ...11
5.3.5.1.1 Manual option (-m) ..11
5.3.5.1.2 Instances option (-i) ...12
5.3.5.1.3 Number option (-n) ..13
5.3.5.1.4 Time option (-t) ..14
5.3.5.1.5 Help option (-h)..15

5.3.6 SST.do..15
5.3.7 SST_bit_flip.pl ...16
5.3.8 SST_config.tcl..16
5.3.9 SST_perl_package.pm ...16

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM/DGG-SST2
page iv of iv

s
6 SST DIRECTORY STRUCTURE..16

6.1 Files supplied by the user...16
6.2 Files generated by the tool ...16

7 TEST EXAMPLE ..17

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 1 of 18

1 SCOPE
The object of this document is to describe what the Single Event Upsets Simulation Tool is able to
do, and how this is achieved.

2 TERMS AND ACRONYMS
DUT Design Under Test
GUI Graphical User Interface
HDL Hardware Description Language
SEU Single Event Upset
SST Single Event Upsets Simulation Tool

3 APPLICABLE DOCUMENTS
The table 3.1 shows the documents referred in this document.

[ModelCRef] Modelsim Command Reference.

[SSTUsrMan] SST User Manual

 Tab s

4 IN
Sin
ele
kn
de
wh

On
ind
pro
the
cre

5 FU
Th
to
the
the

le 3.1 Applicable document
TRODUCTION
gle Event Effects and in particular Single Event Upsets are of major concern when dealing with
ctronic designs that will suffer the consequences of a radiation environment. The sooner we
ow the effects of SEUs on a particular design, the better. This is the main reason for the
velopment of this tool: to be able to emulate SEUs, easily and in a useful controlled manner,
ile still in the simulation (HDL) stages of the IC design flow.

e of the main concerns about introducing SEUs in HDL simulations, is to be able to do it with
ependence of the particular design and in a non-intrusive way. The use of Perl as the main
gramming language of the tool, and Tcl/tk to interact with the simulator, made this possible. On
 other hand, the fact that the bit-flips were to be done while a design was being simulated,
ated a dependency with the simulation tool (Modelsim).

NCTIONAL OVERVIEW
e SEUs Simulation Tool consists of a set of Perl and Tcl scripts used to prepare the environment
be able to upset (bit flip) in a controlled and effective manner, any register or internal signal of
 design under test, while a simulation is running. The tool allows several degrees of freedom for
 user to decide, which signals and when during the simulation the SEUs will be emulated. A test

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 2 of 18

bench for the DUT is needed in order to detect if the upsets modify in any way the behavior of the
design.

In order to provide the user with an easy to use environment, a Graphical User Interface has been
developed in Tcl/tk to invoke the scripts (see figure 5.1). The user will always be able to call the
Tcl and Perl scripts directly from the simulator or from a command line interface without using the
GUI, if running the tool in command line mode is preferred.

Figure 5.1 SST Graphical User
Interface main window

5.1 Running steps
Either if the GUI is being used or the command line mode has been chosen, the use of the tool
requires the following four sequential steps (see [SSTUsrMan] for a detailed description of them):

- Load the Test Bench of the DUT in the simulator.
- Gather information about the design.
- Select the wires that are going to be upset and when.
- Run a simulation introducing the upsets.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 3 of 18

5.2 Internal Structure

5.2.1 INTERDEPENDENCY TABLE
A table describing the dependencies of the SST scripts can be found hereafter:

 Is called
 GUI mode command line mode

Calls Input
files/parameters

Output files

SST_gui.tcl From a
Modelsim
window

- SST_startup.tcl
SST_config.tcl
SST_upset_generator.pl
sst.do

Configuration
parameters
have to be set
up in:
SST_config.tcl

SST_perl_package.pm
hierarchy.dat
all_instances.dat
Wire files
all_wires_parser.log
sst.do

SST_startup.tcl Actions/ Gather
design
information

From a Modelsim
window.

SST_config.tcl
SST_list_instances.pl
SST_wires_parser.pl

No input files.
Configuration
parameters
have to be set
up in:
SST_config.tcl

hierarchy.dat
*.sig files
SST_perl_package.pm

SST_config.tcl Automatically called by SST_startup.tcl - Configuration
parameters
have to be set
up in this script

SST_perl_package.pm

SST_list_instances
.pl

Automatically called by SST_startup.tcl SST_perl_package.pm hierarchy.dat all_instances.dat

SST_wires_parser
.pl

Automatically called by SST_startup.tcl SST_perl_package.pm all_instances.dat
*.sig files

all_instances.dat
Wire files
all_wires_parser.log

SST_upset_genera
tor.pl

Actions/
Generate Upsets

From a command
line interface or a
Modelsim window.

SST_perl_package.pm all_instances.dat
Wire files
Command
line/GUI
options and
switches

sst.do

sst.do Actions/ Run a
simulation
introducing the
upsets

From a Modelsim
window

SST_bit_flip.pl It requires a test
bench for the
DUT.

-

SST_bit_flip.pl Automatically called by sst.do - The value of the
signal to be
upset

-

SST_perl_package
.pm

Automatically called by:
SST_list_instances.pl
SST_wires_parser.pl
SST_upset_generator.pl

- - -

Tab

le 5.1 Scripts interdependency

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 4 of 18

5.2.2 BLOCK DIAGRAM
A block diagram of the scripts involved in the tool can be found in the following figures:

Figure 5.2 SST_gui.tcl block diagram

SST_gui.tcl

SST_config.tcl

sst.do

SST_upset_generator.tcl

SST_startup.tcl

SST_perl_package.pm

Wire files all_instances.dat

SST_config.tcl

 hierarchy.dat

Sig
files

SST_wires_parser.pl SST_list_design_instances.pl

MASK

SST_startup.tcl

Figure 5.3 SST startup.tcl block diagram

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 5 of 18

SST_config.tcl

SST_perl_packa
ge.pm

SST_bit_flip.pl

sst.do

sst.do all_instances.dat

Wire files

Command line
interface / GUI

options

SST_upset_generator.pl
SST_startup.tcl

Figure 5.4 Interactions between SST_startup.tcl,
SST_upset_generator.pl and sst.do.

5.3 SST scripts description

5.3.1 SST_GUI.TCL
The Graphical User Interface is written in Tcl/tk and consists of a menu bar and an interface
window. The steps required to run the tool can be easily followed by simply clicking in the menu
buttons and by filling the entry widgets that will appear in the interface window.

5.3.1.1 ‘Actions’ menu button
The actions menu button has three different options as can be seen in figure 5.5. Each of these
options invokes a different Tcl or Perl script, which performs the action stated by its option label.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 6 of 18

Figure 5.5 SST GUI ‘Actions’
menu button.

5.3.1.1.1 Gather design information

This option executes the script SST_startup.tcl after reminding the user that a design needs to be
loaded.

5.3.1.1.2 Generate upsets

This option executes the script SST_upset_generator.pl after the user has filled the entry boxes and
check buttons of the interface window (see figure 5.6).

Figure 5.6 SST GUI, ‘Generate
upsets’.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 7 of 18

5.3.1.1.3 Run a simulation introducing the upsets

This option executes the script sst.do (generated by SST_upset_generator.pl), which runs a
simulation introducing the desired upsets.

5.3.1.2 ‘Configuration’ menu button
The configuration menu button opens the file SST_config.tcl for editing.

5.3.1.3 ‘Help’ menu button
The help menu button contains links to PDF versions of both this document and [SSTUsrMan].

5.3.2 SST_STARTUP.TCL
This script is written in Tcl and consists of a set of simulator commands and two Perl script calls.
It can be seen as a simulator macro as a whole, which is used to set up the environment for another
script: SST_upset_generator.pl

In order to upset the value of any wire of a particular design, it is necessary to know the exact
location of it, which implies that the hierarchy and the structure of the DUT has been completely
analysed and understood. On one hand we need to know the number of modules and the way they
are instantiated. On the other hand, we need to specify the type of wire we are interested in
(internal signal, input or output of any sub-module, etc) and find out how many wires of this type
can be found in every module.

The hierarchy of the DUT (the number of modules and how they are instantiated) is saved into the
file hierarchy.dat by SST_startup.tcl, using the commands reproduced in figure 5.7.

view structure
.structure.tree expandall -1
.structure.tree write ./SST/control_files/hierarchy.dat

Figure 5.7 Saving the hierarchy of the DUT

However, if that structure file is to be used by the tool, we need to give it a more useful format.
This is the task performed by the Perl script SST_list_instances.pl, called from SST_startup.tcl

The selection of the type of wire we want to focus in, has to be done by directly editing the
wire_mask configuration parameter in SST_config.tcl.

The names of the wires that belong to a particular instance can be saved into a file, which name
will be the instance name (unless several instances have the same name, in that case a number is
appended at the end) and which extension will be .sig, using a command similar to the one used to
save the hierarchy of the DUT, as can be seen in figure 5.8.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM/DGG-SST2
page 8 of 18

s
 view signals

.signals.tree write instancename.sig

Figure 5.8 Saving the wires that belong to a
particular module of the DUT

To collect this information from all the modules instantiated in the DUT, a loop through the whole
hierarchy has to be performed. As it happened with hierarchy.dat, the *.sig files will need to be
reformatted by another script (SST_wires_parser.pl) in order to be used by the SST afterwards.
These newly formatted files will be stored in: ./SST/wire_files and will have the extension hold in
the SST_config.tcl variable ‘$wire_files_ext’

In order for the Perl files to use the configuration parameters defined in SST_config.tcl, the script
SST_startup.tcl creates a Perl package called SST_perl_package.pm in SST/control files. This
package contains a copy of those parameters that will be used by Perl scripts.

5.3.3 SST_LIST_INSTANCES.PL
This Perl script is called from SST_startup.tcl. Its basic function is to reformat the file
hierarchy.dat into all_instances.dat. It also checks the names of all the instances, so the files that
will be generated by the script SST_wires_parser.pl (which are named after every single instance),
could have names that do not conflict with each other or with the tool itself.

Samples of hierarchy.dat and all_instances.dat can be found in figures 5.9 and 5.10.

Figure 5.9 hierarchy.dat file

tb_top: tb_top(behaviour)
 tbinterfacei: interface(beh)
 txfifo: fifo(beh)
 rxfifo: fifo(beh)
 txi: tx(beh)
 rxi: rx(beh)
 statemachinei: statemachine(beh)
 link: link_wrap(rtl)
 li_1: link_interface(structural)
 clk10gen_1: clk10gen(rtl)
 state_machine_1: state_machine(rtl)
 state_counter_1:
state_counter(rtl)
 receiver_1: receiver(structural)
 rxcontrol: rx_control(rtl)
 transmitter_1: transmitter(structural)
 txctrl: tx_controller(rtl)
 txfifo: generic_fifo(behav)
 rxfifo: generic_fifo(behav)
 common_ctr1li: common_ctrl(behaviour)
Package std_logic_textio

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 9 of 18

5.3.3.1 all_instances.dat format
The file contains 4 columns:
- Force: this column is used to state whether the instance has been selected or not to have its

wires upset (‘No’ is the default value written in this column when the file is created).
- File name: The file name is based on the instance name. If several instances have the same

name, an ‘-n#’ will be appended at the end of the file name, from the second occurrence on,
where # holds the number of repetitions. If an instance name has any of the following
characters: \/:*?"<>|, they will be replaced by '-' when giving a name for its corresponding file
(the instance full path column will keep the original characters).

- # of wires: the number of wires of the type selected in SST_startup.tcl that can be found in
each instance. This field is filled by the script SST_wires_parser.pl since SST_list_instances.pl
has no information about the contents of each instance (‘unknown’ is the default value written
in this column when the file is created).

- Instance full path.

Figure 5.10 all_instances.dat
Reformatted version of hierarchy.dat generated
by the script SST_list_instances.pl

Force File Name # wires Instance full path
No tb_top unknown /tb_top
No tbinterfacei unknown /tb_top/tbinterfacei
No txfifo unknown /tb_top/tbinterfacei/txfifo
No rxfifo unknown /tb_top/tbinterfacei/rxfifo
No txi unknown /tb_top/tbinterfacei/txi
No rxi unknown /tb_top/tbinterfacei/rxi
No statemachinei unknown /tb_top/tbinterfacei/statemachinei
No link unknown /tb_top/link
No li_1 unknown /tb_top/link/li_1
No clk10gen_1 unknown /tb_top/link/li_1/clk10gen_1
No state_machine_1 unknown /tb_top/link/li_1/state_machine_1
No state_counter_1 unknown /tb_top/link/li_1/state_machine_1/state_counter_1
No receiver_1 unknown /tb_top/link/li_1/receiver_1
No rxcontrol unknown /tb_top/link/li_1/receiver_1/rxcontrol
No transmitter_1 unknown /tb_top/link/li_1/transmitter_1
No txctrl unknown /tb_top/link/li_1/transmitter_1/txctrl
No txfifo-n1 unknown /tb_top/link/txfifo
No rxfifo-n1 unknown /tb_top/link/rxfifo
No common_ctr1li unknown /tb_top/common_ctr1li

5.3.4 SST_WIRES_PARSER.PL
This Perl script is also called from SST_startup.tcl. It has two separate tasks, the first one is to give
a useful list of the wires that can be found in every instance, and the second one is to update the
contents of the file all_instances.dat, by setting the number of wires every instance has, and by
removing from it all those instances that have no wires from the type selected in SST_config.tcl
(these removed instances will be logged together with a warning message to all_wires_parser.log)

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 10 of 18

As it was stated before, for every single instance found in the DUT, the script SST_startup.tcl
generates a .sig file. These *.sig files contain all the relevant information of the wires that can be
found in each instance, however their format is not very user friendly. The SST_wires_parser.pl
script gives the *.sig files a handier format as can be seen in figure 5.11 B. The extension name for
these reformatted files can be set up in SST_config.tcl as desired. They will inherit the file name
from the .sig file they come from (which is set in SST_list_instances.pl), and they will be referred
as wire files throughout this document.

Figure 5.11 Internal signals of a particular instance.
A. *.sig file
B. Wire file

Force Name @Time

No clk 0ns
No rst 0ns
No rx_data 0ns
No rx_write 0ns

B

clk = U
rst = U
rx_data = XXXXXXXXX
 (8) = U
 (7) = U
 (6) = U
 (5) = U
 (4) = U
 (3) = U
 (2) = U
 (1) = U
 (0) = U
rx_write = U

A

5.3.4.1 Wire files format
Each file contains 3 columns:
- Force: this column is used to state whether the wire has been selected or not to be upset (‘No’

is the default value written in this column when the file is created).
- Name.
- @Time: The scheduled time when the wire is going to be upset (‘0ns’ is the default value).

5.3.5 SST_UPSET_GENERATOR.PL
This Perl script is the core of the SEUs Simulation Tool since the selection of what wires are to be
upset and when this will happen is done here. The basic idea taken into account while developing
this script was to give the user a great flexibility when controlling where and when the upsets can
be simulated, so a wide range of tests could be run on the DUT.

Before running SST_upset_generator.pl, it is mandatory to have executed the macro
SST_startup.tcl once (or its equivalent GUI option). The files created by the calls to Perl scripts
found in this macro are necessary for SST_upset_generator.pl to run properly.

The following points have to be considered:

- Number of wires: How many do we want to upset?

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 11 of 18

- Location of the wires: Is there a particular place (instance, group of wires, etc) on our

design that we want to test?
- Time when the upsets have to be done: At what point of the simulation do we want to upset

the wires?
- Names of the wires: Is there a particular pattern of characters that we can use to select the

wires to be upset?

The selection of wires and the time of the upset is done via some command line interface options
and switches, if the command line mode is used, or by filling the entry boxes and check buttons of
the interface window, if we are running the GUI. Once these input parameters are interpreted, the
script SST_upset_generator.pl generates a simulator macro, sst.do, which will be used to run a
simulation and upset the selected wires at the times specified.

5.3.5.1 Options and switches

5.3.5.1.1 Manual option (-m)

Both all_instances.dat and the wire files have to be edited manually by the user of the script, in
order to select the desired wires and the upset times. The way to select a particular instance in
all_instances.dat is by writing a ‘Yes’ in the Force column. The way to select a wire of an instance
is by writing a ‘Yes’ in the Force column and a time value on the @time column of the
corresponding wire file.

This option excludes the rest of the command line interface options.

B

A C:\test >SST_upset_generator.pl –m

Figure 5.12 Example of use of the ‘manual’ option
of the script SST_upset_generator.pl.

A. Command line mode.
B. GUI mode.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 12 of 18

5.3.5.1.2 Instances option (-i)

This option is used to specify in what instances, from the ones that can be found in
all_instances.dat, we want to induce the upsets. It has 3 switches (optional characters or fields are
written inside brackets):

- r(ead): the user has selected the instances by editing all_instances.dat. The script will just
read this file in. Note that this option is not similar to “- m” since that manual option
implies that both all_instances.dat and the wire files have been edited.

- f(ilter): the selection of instances will be done by filtering their names using patterns
introduced via the command line interface. The patterns should be Perl like regular
expressions.

 Valid input format for the command line mode: -i()filter (#) pattern1 (pattern2) (pattern3)
Where # is the number of filtered instances to be randomly selected. If this number is not
specified, all the filtered instances will be selected.

- Number: a number specifies the amount of instances that will be randomly selected.

B

A C:\test >SST_upset_generator.pl -ifilter 3 _reg$

Figure 5.13 Example of use of the ‘instances’ option of the
script SST_upset_generator.pl

Amongst all the instances whose names end with ‘_reg’,
three of them will be randomly selected. The ‘$’character is
used by Perl and Tcl to anchor the search to the end of a
string. If we want to search for the occurrence of a ‘$’ in
any instance, ‘\$’ should be written instead.

A. Command line mode.
B. GUI mode.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 13 of 18

5.3.5.1.3 Number option (-n)

This option is used to set which wires will be upset. It has 3 switches (optional characters or fields
are written inside brackets):

- n(ot_fixed): the number of wires is calculated using the parameter weight_in, which is
defined in SST_config.tcl. This parameter represents the percentage of the wires that will be
upset in each selected instance.

- f(ilter): the selection of wires will be done by filtering their names using patterns
introduced via the command line interface. The patterns should be Perl like regular
expressions.
Valid input format for the command line mode: -i()filter (#) pattern1 (pattern2) (pattern3)
Where # is the number of filtered wires to be selected. If this number is not specified, all
the filtered wires will be selected.

- Number: a number specifies the amount of wires that will be randomly selected.

B

A C:\test >SST_upset_generator.pl -ir -nfilter q0

Figure 5.14 Example of use of the ‘number’ option of the
script SST_upset_generator.pl

All the wires (of the instances set to ‘Yes’ in
all_instances.dat) whose names contain the pattern ‘q0’ will
be the ones selected.

A. Command line mode.
B. GUI mode.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 14 of 18

5.3.5.1.4 Time option (-t)

This option is used to determine in which time window (within the test bench simulation limits) the
upsets will be emulated. Given a starting time value (0 by default) and a time window, the script
will randomly set a time value between the limits specified, for each signal to be upset.
Valid input formats for the command line mode (parenthesis can be omitted):

- -t window_length time_unit.
- -t (starting_value window_length) time_unit.
- -t (starting_value time_unit window_length time_unit).

Note that the time window has to be selected between the simulation limits, therefore the
simulation length has to be known a priori.

B

A C:\test >SST_upset_generator.pl -ir -n2 -t 1ms 100ns

Figure 5.15 Example of use of the ‘time’ option of the script
SST_upset_generator.pl

Two wires (of the instances set to ‘Yes’ in
all_instances.dat) will be randomly selected to be upset, at
random time values between 1ms and 1.0001ms.

A. Command line mode.
B. GUI mode.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 15 of 18

5.3.5.1.5 Help option (-h)

This option displays a help message with information about the use of the script and some
examples.

5.3.6 SST.DO
This script is written in Tcl and consists of a set of simulator commands and a Perl function call,
which will automatically run a simulation introducing the upsets. The script
SST_upset_generator.pl generates it automatically.

The way sst.do proceeds is as follows (see figure 5.16 for a detailed example):

- The simulation is run up to the first scheduled upset.
- The value of the wire is checked.
- If that value is not undefined, it is upset using the Perl script SST_bit_flip.pl and the

Modelsim command force –deposit.
- The simulation is run up to when the next upset is scheduled.
- The value of the wire is checked and upset…
- When the last upset is done, wait until the simulation ends.

Figure 5.16 Source code of an sst.do file

#Macro generated by SST_upset_generator.pl

run 262285 ns
define signal path
set wire /tb_top/tbinterfacei/txfifo/data_out
examine current value
set wire_checked_val [exa $wire]
flip one bit of the wire
set wire_upset_val [exec perl –S SST_bit_flip.pl
$wire_checked_val]
if {$wire_upset_val != "undefined"} {
 echo Forcing $wire to $wire_upset_val @ 262285ns
 force -deposit $wire $wire_upset_val
} else {
 echo Unable to upset $wire. Undef value.
}

run 10 ns
define signal path
set wire /tb_top/link/li_1/state_machine_1/cntrl
examine current value
set wire_checked_val [exa $wire]
flip one bit of the wire
set wire_upset_val [exec perl –S SST_bit_flip.pl
$wire_checked_val]
if {$wire_upset_val != "undefined"} {
 echo Forcing $wire to $wire_upset_val @ 262295ns
 force -deposit $wire $wire_upset_val
} else {
 echo Unable to upset $wire. Undef value.
}
run -all

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 16 of 18

5.3.7 SST_BIT_FLIP.PL
This small Perl script is used to change the value of a wire and emulate the occurrence of a Single
Event Upset. If the width of the wire is one bit, it negates it. On the other hand, if the width of the
wire is greater than one, it changes the value of one of its bits; the selection of the bit that is going
to be upset, in this case, is done in a random manner.

5.3.8 SST_CONFIG.TCL
This file contains global variable definitions for parameters used in different scripts of the tool.
The parameters that have to be used by Perl scripts will be copied to the package
SST_perl_package.pm

The values of some of these configuration parameters can be changed for advance users to fine
tune the SEUs Simulation Tool. Other configuration parameters such as wire_mask and
wire_files_ext should be checked every time the initialization phase is run, to make sure that the
information gathered is the one we are interested in.

Please refer to the source code of this file to know more about each configuration parameter.

5.3.9 SST_PERL_PACKAGE.PM
This Perl package contains a copy of those configuration parameters set in SST_config.tcl, which
have to be used in Perl scripts.

6 SST DIRECTORY STRUCTURE

6.1 Files supplied by the user
- ./

HDL testbench_files

6.2 Files generated by the tool
- ./SST/control_files

all_instances.dat, all_wires_parser.log, hierarchy.dat,sst.do, SST_perl_package.pm
- ./SST/wire_files

In this folder we can find all the wire files.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04 s

TEC-EDM/DGG-SST2
page 17 of 18

7 TEST EXAMPLE

Assuming that the tool is run together with a self-checking test bench for the DUT, a wide range of
SEUs tests can be created. The Tcl macro of figure 7.1, which is described hereafter, shows an
example of what can be done with the SST.

Figure 7.1 Test example coded in Tcl as a simulator macro.

Before running this script we need to:
* Load the design and run SST_startup.tcl
* Set the variable number_of_ff to the total number of ff we would like to upset (one
at a time)

1 set number_of_ff 20;
2 for {set i 0} { $i<= $number_of_ff} {incr i} {
3 # execute the script SST_upset_generator
4 # select a particular flip flop in -i
5 exec perl –S SST_upset_generator.pl -ifilter ctm/reg__$i/ff\$ -nfilter 1 q0\$ -t

247us 15us
6 echo ### Upsetting: /ctm_testbench/ctm0/ctm/structuralgen/sequentialgen__$i/ff/f
7 # run the modelsim macro created by that script
8 do ./SST/control_files/sst.do;
9 # Check status
10 view variables;
11 set status_index [.variables.tree find Status];
12 set status [.variables.tree get2 $status_index];
13 destroy .variables;
14 set keep_running [regexp {true} $status];
15 if {$keep_running} {
16 restart -f;
17 destroy .source;
18 } else {
19 break;
20 }
21 }

In this test the same simulation is run continuously, upsetting a different (and only one) flip-flop in
each iteration. If the simulation fails, the loop is interrupted.

The variable $number_of_ff holds the number of flip-flops we would like to upset. As only one
flip-flop is being upset each time the simulation is run, this variable also holds the total number of
times we run the simulation (line 2).

The flip-flops are the instances of our design whose names end with ‘reg__#/ff’ (where # is an
integer number) therefore we could use the filter switch of the –i option of the script
SST_upset_generator.pl (line 5), to select a particular flip-flop (the loop variable ‘i’ is used as part
of the search pattern since it holds an integer number). The outputs of the flip-flops can be selected
by using ‘q0’ as a filter pattern for the –n option of the SST_upset_generator.pl script.

Its basic operation per iteration is as follows:

- Execute SST_upset_generator.pl filtering the output of a particular flip-flop.

Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM/DGG-SST2
page 18 of 18

s
- Execute sst.do, which will run the simulation (line 8).
- Continue with a new iteration if the test bench passed, and stop otherwise (line 15)

Note that the character ‘$’ (used by Perl to anchor the search to the end of a string) is being
preceded by a backslash (line 5) to avoid naming conflicts since Tcl also uses the dollar sing to
name its local variables ($number_of_ff, $i, $keep_running…).

	SCOPE
	TERMS AND ACRONYMS
	APPLICABLE DOCUMENTS
	INTRODUCTION
	FUNCTIONAL OVERVIEW
	Running steps
	Internal Structure
	INTERDEPENDENCY TABLE
	BLOCK DIAGRAM

	SST scripts description
	SST_GUI.TCL
	‘Actions’ menu button
	Gather design information
	Generate upsets
	Run a simulation introducing the upsets

	‘Configuration’ menu button
	‘Help’ menu button

	SST_STARTUP.TCL
	SST_LIST_INSTANCES.PL
	all_instances.dat format

	SST_WIRES_PARSER.PL
	Wire files format

	SST_UPSET_GENERATOR.PL
	Options and switches
	Manual option (-m)
	Instances option (-i)
	Number option (-n)
	Time option (-t)
	Help option (-h)

	SST.DO
	SST_BIT_FLIP.PL
	SST_CONFIG.TCL
	SST_PERL_PACKAGE.PM

	SST DIRECTORY STRUCTURE
	Files supplied by the user
	Files generated by the tool

	TEST EXAMPLE

